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Adulteration of sulfited strawberry and raspberry purées by apple is a commercial problem. Strawberry
(n ) 31) and raspberry (n ) 30) purées were prepared from Irish-grown fruit and adulterated at
levels of 10-75% w/w using cooking apples. Visible and near-infrared transflectance spectra were
recorded using a 0.1 mm sample thickness. Classification and quantification models were developed
using raw and scatter-corrected and/or derivatized spectral data. Classification as pure strawberry
or raspberry was attempted using soft independent modeling of class analogy. The best models
used spectral data in the wavelength ranges 400-1098 nm (strawberry) and 750-1098 nm (raspberry)
and produced total correct classification rates of 75% (strawberry) and 95% (raspberry). Quantification
of apple content was performed using partial least-squares regression. Lowest predictive errors
obtained were 11.3% (raspberry) and 9.0% (strawberry). These results were obtained using spectral
data in the wavelength ranges 400-1880 and 1100-1880 nm, respectively. These results suggest
minimum detection levels of apple in soft fruit purées of approximately 25 and 20% w/w for raspberry
and strawberry, respectively.
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INTRODUCTION

Industrial manufacture of fruit-based foods such as jams,
preserves, yogurts, and pie fillings often involves the use of
soft fruit purées. Strawberry (Fragraria ananassa) and raspberry
(Rubus idaeus) are two of the most popular such fruits, and
global crop production and utilization have been growing to
meet food processors’ demands. Estimates for global production
in 2002 were 3.24× 106 metric tonnes (strawberry) and 4.14
× 105 metric tonnes (raspberry) (1). Chile and the central and
eastern European states continue to be the major exporting
countries.

Soft fruits are expensive, highly perishable commodities, and
their storage and transport have traditionally been in the form
of either block-frozen whole fruits or purées. Purées are less
expensive than frozen whole fruit and therefore represent the
most common method of storage and transport, particularly for
processed foods such as jams and pie fillings in which the
textural attributes of whole fruits are not of primary importance.
Purées are defined as “the edible part of the whole fruitsless
the peel, skin, seeds, pips, and likeswhich has been reduced to
a purée by sieving or similar process”, although traded pure´es
may sometimes contain seeds (2). Because of the loss of most
of the original physical structure of the fruit and a considerable
reduction of the color intensity on purée manufacture, visual

identification of specific fruit types is difficult in this physical
form. These losses are all the greater when the fruit is sulfited
during purée manufacture in order to increase shelf life, as is
the practice in some exporting countries. This is because of the
marked reduction in color intensity of purées due to the strong
binding of HSO3

- to the anthocyanin chromophores responsible
for their natural color. In such sulfited purées, the opportunities
for economic adulteration of strawberry and raspberry pure´es
are even greater than those which present themselves in the
untreated product, and such adulteration is believed to be
common (3). In particular, the adulteration of strawberry and
raspberry sulfited purées by the addition of a cheaper, plentiful,
and largely colorless fruit such as apple becomes almost
impossible to detect sensorially. Global apple production was
estimated as 57.1× 106 metric tonnes in 2002 (1).

Detection of a marker compound or compounds that should
not be present in a food is one strategy which has been deployed
to detect adulteration, for example, detection of phloretin 2′-
glucoside (4), phloretin 2′-xyloglucoside (4), or certain phenolic
compounds (5), is clear evidence of the presence of apple in a
fruit product. Another approach involves the measurement of a
range of typical food components, for example, amino acids,
sugars, hydroxy acids, carotenoids, lipids, or proteins, and a
comparison of the results with established, normal concentration
ranges (6-14). However, this latter approach produces outcomes
that are often ambiguous because of the magnitude of natural
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variations in food composition arising from varietal, geographic,
seasonal, and maturity differences.

Unsulfited fruit purées retain most of the spectral information
arising from naturally occurring anthocyanins, chromophores
that have the potential to act as authenticity markers (15). For
example, the main anthocyanin in strawberry (pelargonidin
3-glucoside) is reported to have a lowerλmax than its counterpart
(cyanidin 3-sophoroside) in raspberrys512 nm as compared to
523-525 nm (15). These compounds are not present in apple,
but they are rendered largely colorless as a result of sulfite
action, thus diminishing their capacity to contribute to authentic-
ity issues involving soft fruit. Separation techniques normally
used to detect these analytes, for example, HPLC or gas
chromatography, are time-consuming, expensive, and destructive
of the sample. Spectroscopic measurements in the visible and
near-infrared regions have been studied with a view to detecting
and quantifying food adulteration (16). Mid-infrared spectros-
copy has also been used with some success (17-20). The work
reported in this paper describes the application of visible and
near-infrared spectroscopy to the detection and quantification
of apple adulteration of strawberry and raspberry purées to which
sodium metabisulfite has been added as a preservative. It
represents an extension of previously reported work involving
unsulfited strawberry and raspberry pure´es (21).

MATERIALS AND METHODS

Fruit. Samples of strawberries (n) 31) and raspberries (n) 30)
were obtained directly from local growers in Ireland at various times
during the 2002 season. Strawberry varieties included were Elsanta (n
) 20), Cambridge Favourite (n) 5), Everest (n) 1), Florence (n)
1), Symphony (n) 2), and Bolero (n) 1). Information on the varietal
identity of raspberry samples was difficult to obtain, but of those for
which this information was available (n ) 14), the varietal composition
was as follows: Glenmoy (n ) 5), Glenprosen (n) 1), Autumn Bliss
(n ) 7), and Glenmagnet (n ) 1). Nine raspberry samples were from
the 2001 season with the remainder harvested in 2002. Whole fruit
samples were frozen at-20 °C within 24 h of collection and stored
for periods of 6-9 months at this temperature before use. Before being
puréed, fruit was thawed at 4°C for 16 h and the green sepals were
removed. Individual fruit samples were puréed in a blender (Braun
hand-held liquidizer, 250 W) for 30 s. Immediately thereafter, the pure´e
solids content was measured by refractometry and adjusted to 4% using
a freshly made sodium metabisulfite solution containing 1600 ppm of
sulfite. Prior to adulteration or spectral collection, purées were stored
in covered plastic beakers at 4°C for no longer than 4 h. Cooking
apples labeled as Irish were purchased in local retail outlets and used
within 2 days of purchase. Apples were peeled and cored, with only
the flesh being puréed. As with the soft fruits, the solids content of
apple purées was adjusted to 4% using the aforementioned sulfite
solution. Adulterated, sulfited pure´es (n ) 305) were produced by
adding sulfited apple purée to each sulfited, unadulterated soft fruit
purée sample to produce apple concentrations of 10, 20, 30, 50, and
75 wt %.

Spectra.Transflectance spectra (between 400 and 2498 nm at 2 nm
intervals) were recorded using a NIRSystems 6500 scanning mono-
chromator (FOSS NIRSystems, Silver Spring, MD) equipped with a
sample transport accessory. A camlock transflectance cell fitted with a
gold-plated reflector (0.1 mm sample thickness; FOSS U.K. Ltd., P/N
619378) was utilized for sample presentation to the instrument; seeds
were manually removed from purée samples prior to closure of the
camlock cell. Spectra were collected at ambient temperature (between
18 and 24°C) in the period from May to July 2003. Two subsamples
of each purée were scanned in duplicate with the sample cell being
rotated through∼120° between duplicate scans of each subsample.
Mean spectra were used in subsequent data analysis. Spectrophotometer
control and preliminary spectral file management was performed using
WINISI software (version 1.04a; Infrasoft International, Port Matilda,
MD). Exploratory data analysis, calibration development, and validation

were performed using WINISI, The Unscrambler (v. 7.6; CAMO
A/S, Trondheim, Norway) and Minitab software (release 13.32;
www.minitab.com).

Data Analysis. Preliminary data evaluation was performed using
principal component analysis (PCA) to detect unusual or outlying
spectra. Classification studies were performed using soft independent
modeling of class analogy (SIMCA), whereas apple quantification
models were developed using partial least-squares (PLS) regression.
Each SIMCA and PLS analysis was performed using spectral data in
a number of wavelength ranges, that is, 400-750 nm (visible), 750-
1100 nm (near near-infrared), and 400-1100, 1100-1880, and 400-
1880 nm. The upper wavelength cutoff of 1880 nm was selected due
to the high absorbances in purée spectra seen beyond this data point
and the concomitant likely nonlinearity of detector response. Calibration
models were developed using raw spectral data and after either a scatter-
correction pretreatment [standard normal variate (SNV)+ detrend (22)]
or scatter correction plus derivatization procedures (first and second
derivatives with a range of gap sizes). The most accurate models
involving derivatization used a second-derivative pretreatment step with
a 10-datapoint gap size; only those models have been reported in this
paper. Class cutoff limits in SIMCA were set at the 5% level; that is,
assuming the data are normally distributed, 5% of samples belonging
to any given class may be identified as not belonging to it. Classification
models (SIMCA) for each soft fruit were developed using 20 of the
relevant set of unadulterated purée samples; model evaluation was
performed using a spectral file containing all of the fruit purée spectra,
that is, all unadulterated and adulterated samples (n ) 366). The
calibration files for strawberry included varieties Elsanta (n ) 8),
Everest (n) 1), Symphony (n ) 3), Cambridge Favourite (n ) 5),
Florence (n) 1), and unknown (n) 2). Varietal composition of the
corresponding raspberry calibration file was Glenmoy (n ) 3), Autumn
Bliss (n ) 4), and unknown (n) 13). Quantitative models for the
prediction of apple purée content were developed in WINISI software
using modified PLS regression with full leave-one-out cross-validation.

RESULTS AND DISCUSSION

Spectra.Transflectance spectra of representative samples of
sulfited apple, strawberry, and raspberry purées are shown in
Figure 1a. The main features of the spectra are peaks around
1450 and 1940 nm arising from water absorptions. Temperature
effects on the spectra of samples containing high contents of
water such as these purées can be severe; in this work, these
effects were minimized through standardization of the sample
preparation and spectral collection rather than through any
temperature equilibration step. The similarity between the pure´e
spectra at all wavelengths is marked, as also is the flat peak
centered around 2000 nm, which is the result of signal saturation.
As mentioned earlier, an upper wavelength cutoff of 1880 nm
was selected so as to avoid complications arising from response
nonlinearities, even though this has the effect of losing potential
information about sugar moieties which occur in the wavelength
region 2000-2500 nm. In spectra of unsulfited pure´es (Figure
1b) there is considerable detail in the visible wavelength range,
and differences in absorption peak location and size are clearly
evident between apple, strawberry, and raspberry fruits (21).
The addition of sulfite to the purées and the reduction to a solids
level of 4% remove spectral detail from the strawberry and
raspberry samples in the visible region and reduce absorption
peak heights. Given that inclusion of spectral data in the visible
wavelength range was a feature of the most accurate models
previously reported for the classification and quantification of
apple adulteration in unsulfited strawberry and raspberry pure´es
(21), it is to be expected that the reduction in the information
content in this wavelength range in the case of sulfited pure´es
will have an impact on the success of this analytical approach.
The lack of detail above 2000 nm in the spectra of diluted and
sulfited purées is also in marked contrast to spectra of untreated
purées (21).
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Classification. The accuracy of classification models was
assessed on the basis of the number of false positive and false
negative results produced by each. A false positive result occurs
when a sample is wrongly identified as belonging to a specific
class; conversely, a false negative result occurs when a sample
that does belong to a class is not classified as such. False positive
results may be considered the more serious of the two because
they result in failure to detect adulteration or mislabeling. False
negatives may be corrected upon subsequent testing using
alternative analytical methods. A summary of the classification
results obtained by SIMCA for each of the wavelength ranges
studied is shown inTable 1 with the best performing models
clearly indicated. These models have generally been selected
on the basis that they produce the smallest number of mis-
classified samples.

In the case of strawberry, it is interesting to note that two
models exhibit almost identical performances, that is, those
involving the wavelength ranges 400-750 and 400-1098 nm.
These models differ only in the distribution of false positive
predictions arising from adulterated strawberry and adulterated
raspberry samples. In this case, the authors have selected the
model using the 400-1098 nm wavelength range as the
preferred option on the basis that to rely only on visible
wavelength data may weaken the effectiveness of the model
because of the relative ease with which purée color character-
istics may be manipulated. The importance of the visible
wavelength region in these models is interesting, despite the
inclusion of sulfite in these purées and its consequent bleaching
effect on fruit. No clear pattern concerning, for example, the
adulteration level or variety of strawberry samples misclassified
by this model was discernible. No unadulterated raspberry

samples were misclassified by any of these strawberry models,
whereas the level of false negatives was low at 2 or 3 (of 30).
Overall, the percentage correct classification for this strawberry
model was high at 95.1%.

In the case of raspberry models, the best performance was
achieved using the wavelength range 750-1098 nm (Table 1),
although the number of misclassified samples is high. The
percentage correct classification rate for the best raspberry model
was lows75.1%. Interestingly, all of the strawberry samples
misclassified by this particular model were unadulterated,
whereas other classification models wrongly identified both
adulterated and unadulterated strawberry samples. No pattern
involving variety or level of adulteration could be detected in
the misclassified adulterated raspberry samples.

On the basis of these results, this classification approach does
not have the necessary discriminating power to be useful
industrially for raspberry purées. However, the strawberry model
does possess the necessary classification accuracy to be applied
commercially. Interestingly, the best strawberry model reported
here is better than that previously reported for similar but
unsulfited pure´es (21). In this latter case, although no false
negative identifications were made, 36 false positive classifica-
tions were reported. No breakdown of the latter according to
sample type was presented.

Quantification of Adulterant Level. A total of 15 prediction
models was developed for the quantification of apple in
unadulterated and adulterated samples of each fruit purée type.
These involved five wavelength ranges and the use of three
forms of spectral datasraw, treated by standard normal variate
and detrending (SNV+ detrend), and the latter plus derivation
(second derivative, 10-datapoint gap size). The summary results
of this work are presented inTables 2and3 for raspberry and
strawberry purées, respectively.

In the case of raspberry, the most accurate model involved
SNV + detrend+ second-derivative data. This model involved
spectral data in the wavelength range 400-1880 nm, used five

Figure 1. Representative transflectance spectra of (a) sulfited apple,
raspberry, and strawberry purées (4% solids content) and (b) unsulfited
apple, raspberry, and strawberry purées (4% solids content) (Reproduced
by permission of NIR Publications).

Table 1. Summary Results of Fruit Purée Classifications [Spectra
Collected in Camlock Cell Fitted with Gold-Plated Reflector (0.1 mm
Sample Thickness); Most Accurate Models in Boldface Type]

fruit type
wavelength
range (nm)

FPa

overall
FPa

detaild FNb
total mis-

classifications PCsc

raspberry 750−1098 89 28 (S) 2 91 1
61 (AR)

400−1880 187 27 (S) + 28 (AS) 1 188 5
132 (AR)

1100−1880 154 27 (S) + 16 (AS) 3 157 2
111 (AR)

400−750 193 22 (S) + 43 (AS) 0 193 4
128 (AR)

400−1098 186 22 (S) + 37 (AS) 0 186 4
127 (AR)

strawberry 750−1098 88 2 (AS) 3 91 1
17 (R) + 69 (AR)

400−1880 32 12 (AS) 3 35 2
2 (R) + 18 (AR)

1100−1880 92 17 (AS) 3 95 3
9 (R) + 66 (AR)

400−750 15 11 (AS) 2 17 3
4 (AR)

400−1098 16 7 (AS) 2 18 3
9 (AR)

a False positive classifications. b False negative classifications. c Number of
principal components in model. d Letters in parentheses describe the false positive
samples as follows: S ) strawberry; AS ) adulterated strawberry; R ) raspberry;
AR ) adulterated raspberry.
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PLS loadings, and produced a standard error of cross-validation
(SECV) equal to 11.3%. This latter figure suggests that the
model is unable to detect apple adulteration at levels below
∼23% w/w, that is, 2× RMSEP. This accuracy figure compares
favorably with a detection limit of∼20% w/w for apple in
raspberry purées using mid-infrared spectroscopy (24). The
regression line for this model together with the relevant statistics
is shown inFigure 2. In total, three models highlighted inTable
2 produced levels of predictive accuracy that were very similar.
For unmodified spectral data, the visible wavelength range
(400-750 nm) proved to be most accurate but required 10
loadings. When the spectral data were subject to modification
by SNV + detrend only, the best results used the 400-1098
nm wavelength range and required 8 PLS loadings but had a
SECV of 11.7%. In this instance, selection of the best model

involved minimizing the number of PLS loadings required (so
as to maximize the chances of model robustness) and avoiding
exclusive reliance on visible wavelength data for the reason
described above.

Irrespective of the spectral pretreatment used, the wavelength
range 750-1098 nm produced the least accurate models.
However, inclusion of spectral information from the visible
wavelength range was necessary for the most accurate models.
This may appear to be surprising given the incorporation of
sodium metabisulfite in these purée preparations, but it should
be borne in mind that at the levels used, the solutions were not
bleached but discolored.

The importance of particular wavelengths in the most accurate
model developed for apple quantification is revealed in a plot
of the PLS loadings versus wavelength (Figure 3). From this
graph, it is apparent that considerable information is extracted
from the wavelength region 400-750 nm by all five of the
loadings, the peak magnitudes of which are significantly greater
than those for any other wavelengths in the 400-1880 nm range.
There appears to be significant structure in the loadings at a
number of regions in the wavelength range, especially around
1400-1600 nm; only the region between 1600 and 1800 nm
appears to be relatively flat and therefore limited in significance.

Table 2. Summary Results for Quantification of Apple Content in
Raspberry Purées [Spectra Collected Using Transflectance Cell (0.1
mm Sample Thickness); Most Accurate Model in Boldface Type]

spectral
pretreatment

wavelength
range (nm) loadingsa SECVb Rc ad

none 750−1098 9 17.5 0.73 1.0
400−1880 12 11.8 0.89 1.0

1100−1880 10 12.4 0.87 1.0
400−750 10 11.5 0.89 1.0
400−1098 10 12.1 0.88 1.0

SNV + detrend 750−1098 11 15.5 0.79 1.0
400−1880 11 11.3 0.90 1.0

1100−1880 11 12.5 0.87 1.0
400−750 8 11.9 0.88 1.0
400−1098 8 11.7 0.89 1.0

SNV + detrende + 750−1098 7 16.5 0.76 1.0
second derivative 400−1880 5 11.3 0.90 1.0

1100−1880 7 12.6 0.87 1.0
400−750 7 11.1 0.90 1.0
400−1100 7 11.6 0.89 1.0

a Number of partial least-squares loadings in regression model. b Standard error
of cross-validation. c Correlation coefficient. d Slope of fitted regression line.
e Standard normal variate and detrending of second-derivative spectra (gap size
of 10 data points).

Table 3. Summary Results for Quantification of Apple Content in
Strawberry Purées [Spectra Collected Using Transflectance Cell (0.1
mm Sample Thickness); Most Accurate Model in Boldface Type]

spectral
pretreatment

wavelength
range (nm) loadingsa SECVb Rc ad

none 750−1098 13 10.7 0.91 1.0
400−1880 13 12.1 0.88 1.0

1100−1880 11 9.0 0.94 1.0
400−750 11 16.2 0.78 1.0
400−1098 13 10.7 0.91 1.0

SNV + detrend 750−1098 13 9.6 0.93 1.0
400−1880 13 12.1 0.88 1.0

1100−1880 13 8.9 0.94 1.0
400−750 12 14.4 0.83 1.0
400−1098 13 9.6 0.93 1.0

SNV+ detrende + 750−1100 12 10.2 0.92 1.0
second derivative 400−1880 11 9.1 0.94 1.0

1100−1880 8 12.1 0.88 1.0
400−750 5 15.4 0.81 1.0
400−1100 11 9.1 0.94 1.0

a Number of partial least-squares loadings in regression model. b Standard error
of cross-validation. c Correlation coefficient. d Slope of fitted regression line.
e Standard normal variate and detrending of second-derivative spectra (gap size
of 10 data points).

Figure 2. Plot of actual versus predicted apple content in unadulterated
and adulterated raspberry purées (400−1880 nm range; SNV + detrend
+ second derivative using 10-datapoint gap).

Figure 3. Loadings plot for PLS quantification of apple content in
unadulterated and adulterated raspberry purées [400−1880 nm; SNV +
detrend + second derivative (10-datapoint gap size)].
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For comparison, the complete set of spectra from which this
model was developed is shown inFigure 4; the main features
of this graph correspond well with the maxima and minima of
the loadings plot (Figure 3). Although the involvement of water
seems to be indicated by loading peaks and troughs around 1440
and 1800 nm (Figure 3), the involvement of other species is
reflected by ordered features in the loadings between 1450 and
1600 nm, approximately. These may be related to cellulose,
which exhibits a broad peak in this region (23). The wavelength
range that produced the best qualitative model (750-1098 nm)
differed from the quantitative model described here. This may
well be explained by the different data compression techniques
used in each, that is, PCA (qualification) and PLS (quantifica-
tion). This difference has been previously observed and reported
for unsulfited pure´es (21).

Quantification of apple content in unadulterated and adulter-
ated sulfited strawberry purées was also investigated using the
wavelength ranges and spectral data pretreatments mentioned
above. A summary of the model performances is shown inTable
3 with the best model highlighted. In this case, the model of
choice predicted apple content with a SECV equal to 9.0%, that
is, a limit of detection of 18% w/w (2× RMSEP). It used raw
spectral data in the range 1100-1880 nm (Figure 5). Several
other models produced prediction statistics that were almost

equal to this but on the basis that, all things being equal, simple
models are to be preferred to more complex ones, the model
using raw spectral data was selected. The main features of the
PLS loadings plots (Figure 6) occur between 1380 and 1580
nm; this wavelength range was also important in the selected
raspberry model and may arise from cellulose as well as water.
The involvement of water moieties at around 1800 nm is also
apparent (Figure 6). Raw spectra of all the strawberry samples
in this wavelength range are shown inFigure 7.

Conclusions.Adulteration of strawberry and raspberry pure´es
with apple in the presence of sodium metabisulfite is a
commercial problem. The discoloration resulting from the
inclusion of metabisulfite reduces the information in the visible
wavelength range arising from anthocyanin contents, which are
characteristic of both soft fruits. This information has been
demonstrated to be important in the detection of this type of
adulteration in unsulfited pure´es (21). Even in the presence of
sulfite, information in the visible wavelength range remains
critical for the detection of this form of adulteration for both
soft fruits. For routine screening of unknown samples, SIMCA
classification was sufficiently accurate to be commercially useful
in the case of strawberry (95.1% correct classification). This
classification method produced very low correct classification
rates for raspberry and is therefore not recommended for
industrial use. With regard to apple quantification in purées,
PLS regression models produced SECV of 9.0% w/w (straw-

Figure 4. Spectra (400−1880 nm) of raspberry (unadulterated and
adulterated) purées after pretreatment [SNV + detrend on second derivative
(10-datapoint gap size)].

Figure 5. Plot of actual versus predicted apple content in unadulterated
and adulterated strawberry purées (raw spectral data; 1100−1880 nm
range).

Figure 6. Loadings plot for PLS quantification of apple content in
strawberry purées (1100−1880 nm; raw spectral data).

Figure 7. Raw spectra (1100−1880 nm) of strawberry (unadulterated and
adulterated) purées.
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berry) and 11.3% w/w (raspberry). Given the range of adulterant
utilized (0-75%), these accuracy levels result in range/error
ratios of 8.3 and 6.6, respectively. These standard error levels
suggest minimum detectable limits of about 20 and 25% w/w
for apple adulteration in strawberry and raspberry purées,
respectively. Given that adulteration of raspberry pure´es by
incorporation of∼20% w/w apple has previously been reported
as representative of levels at which adulteration may occur (24),
the minimum detection limits reported in the present study are
appropriate for industrial use.

Both visible and near-infrared spectroscopy have previously
been shown to quantify apple content in adulterated unsulfited
strawberry and raspberry purées with prediction errors of 5.5
and 3.4% w/w, respectively (21). One way of improving the
quantification of apple in sulfited purées reported in this work
may be to incorporate acetaldehyde in the purée dilution
solution, thereby trapping sulfite and restoring the spectral
information arising from the soft fruit chromophores. This
procedure is based on the stronger binding of acetaldehyde to
anthocyanins than to sulfite and is already applied to the
measurement of phenolic compounds in wine (25). Its applica-
tion would allow the application of predictive models, either
new or based on the previous work on unsulfited purées, which
may be expected to possess predictive accuracies better than
those developed in this work.
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